亲亲发出吧唧吧唧的声音,美国女子监狱,av 丝袜 欧美 老 另类 亚洲,国色天香久久久久久久小说

Latest light beam technology eyes 100-times-faster internet speeds: Aussie researchers

Source: Xinhua| 2018-10-24 17:11:29|Editor: xuxin
Video PlayerClose

SYDNEY, Oct. 24 (Xinhua) -- Advanced technology harnessing unique features of light beams could carry more data and process it more quickly, pointing to internet speeds that are 100 times faster than what connections now allow, according to a latest Australian-linked research.

Current broadband fiber optics carry information on pulses of light but the way the light is encoded at one end and processed at the other affects data speeds. The advanced nanophotonic devices being developed by researchers can read a special form of "twisted" light and forms the missing key to unlocking super-fast, ultra-broadband communications, RMIT University researcher Haoran Ren said in a statement on Wednesday.

"Present-day optical communications are heading towards a 'capacity crunch' as they fail to keep up with the ever-increasing demands of Big Data," said Ren, who co-led the report of the findings.

"What we've managed to do is accurately transmit data via light at its highest capacity in a way that will allow us to massively increase our bandwidth."

Current state-of-the-art fiber-optic communications, like those used in Australia's National Broadband Network, tap a fraction of light's actual capacity by carrying data on the color spectrum.

New broadband technologies being developed use the oscillation or shape of light waves to encode data, increasing bandwidth by also making use of light aspects that cannot be easily detected, according to the university.

The latest devices help carry data on light waves that have been "twisted" into a "spiral" to further increase their capacity, it said.

The new technology, reported in scientific journal Nature Communications, can also be used to receive advanced quantum information, with applications for a wide range of cutting-edge communications and computing research, said the university's Professor Min Gu.

"Our nano-electronic device will unlock the full potential of twisted light for future optical and quantum communications," said Gu.

TOP STORIES
EDITOR’S CHOICE
MOST VIEWED
EXPLORE XINHUANET
010020070750000000000000011100001375551741
主站蜘蛛池模板: 南靖县| 八宿县| 财经| 鄱阳县| 迭部县| 丽水市| 科技| 哈尔滨市| 秀山| 华安县| 涿州市| 太原市| 平遥县| 莒南县| 阳信县| 南召县| 饶河县| 新乐市| 柳江县| 吉安市| 宁城县| 潢川县| 兴山县| 乐都县| 舞钢市| 中方县| 营口市| 南郑县| 资溪县| 信阳市| 邵阳县| 高唐县| 蓬莱市| 海口市| 靖边县| 通海县| 浦江县| 滦南县| 华蓥市| 威海市| 安塞县|