亲亲发出吧唧吧唧的声音,美国女子监狱,av 丝袜 欧美 老 另类 亚洲,国色天香久久久久久久小说

China Focus: Chinese university aims to bring trust, resilience to next-generation AI

Source: Xinhua| 2019-05-14 14:08:52|Editor: mingmei
Video PlayerClose

BEIJING, May 14 (Xinhua) -- From voice assistant to face recognition; from defeating master players in Go to crushing professional gamers in strategy game StarCraft; the world has witnessed exciting progress in the development of artificial intelligence (AI).

As AI is applied to higher-stake functions - like self-driving cars, automated surgical assistants, hedge fund management and power grid controls - how can we ensure it's trustworthy?

China's prestigious Tsinghua University has announced it will step up basic research on third-generation AI, in the hope of building trust and preventing abuse and malicious behavior of AI models.

Zhang Bo, director of the Tsinghua Institute for Artificial Intelligence and academician at the Chinese Academy of Sciences, unveiled the plan at the opening of Center for Fundamental Theories under the Institute for Artificial Intelligence on Monday.

Tsinghua researchers have been talking about the future of AI since 2014 and expect it to enter the third stage of its development in coming years, said Zhang.

The first-generation AI was driven by the knowledge that researchers themselves possessed and they tried to provide the AI model with clear logical rules. These systems were capable of solving well-defined problems, but incapable of learning.

In the second-generation, AI started to learn. Machines learn by training a system on a data set and then testing it on another set. The system eventually becomes more precise and efficient.

Zhang said the weakness of the second-generation lies in its explainability and robustness.

AI robustness refers to an acceptably high performance even in worst-case scenarios.

Although AI has already outperformed humans in certain areas like image recognition, nobody understands why these systems are doing so well.

Machine learning and deep learning, the most common AI branches of recent years, suffer from the so-called "AI black box". People find it hard to interpret the AI-based decisions and cannot predict when the AI model will fail and how it will fail.

Meanwhile, even accurate AI models can be vulnerable to "adversarial attacks" in which subtle differences are introduced to input data to manipulate AI "reasoning".

For instance, an AI system might mistake a sloth for a racing car if some unnoticeable changes are made to a photo of sloth.

Researchers therefore need to improve and verify the robustness of AI models, leaving no room for adversarial examples or even attacks to manipulate results.

If AI technologies are deployed in security-sensitive or safety-critical scenarios, the next-generation needs to be comprehensible and more robust, said Zhang.

Zhu Jun, director of the new center, said it will carry out interdisciplinary studies and expects to attract talent from around the world, providing them with a relaxed academic environment.

He said Tsinghua University plans to host a high-level and fully-open AI meeting every year.

"If anything helps innovation, we'll give it a try," said Zhu.

"It's hard to predict the progress of research on fundamental theories. It could be explosive and trail-blazing."

TOP STORIES
EDITOR’S CHOICE
MOST VIEWED
EXPLORE XINHUANET
010020070750000000000000011100001380574051
主站蜘蛛池模板: 曲沃县| 彭阳县| 南汇区| 西城区| 永安市| 晋州市| 宁化县| 灵宝市| 中西区| 富蕴县| 滦南县| 交口县| 延庆县| 隆德县| 宜川县| 安康市| 改则县| 弥渡县| 英山县| 奉化市| 肥东县| 大洼县| 邯郸市| 高要市| 广德县| 天柱县| 新田县| 静安区| 呼图壁县| 镇雄县| 高安市| 昌江| 集安市| 商南县| 通辽市| 罗定市| 师宗县| 库尔勒市| 阜宁县| 盐源县| 湟中县|